A neutron source for activation measurements in a stellar spectrum at $\kappa T{=}5~\kappa eV$

Michael Heil¹, Saed Dababneh¹, Franz Käppeler¹, Shawn O'Brien², Ralf Plag¹, Rene Reifarth³

We report on a measurement of the neutron energy spectrum of the $^{18}{\rm O}({\rm p,n})$ reaction at a proton energy of 2582 keV, just 8 keV above threshold. At this energy the resulting spectrum resembles almost perfectly a Maxwellian neutron energy spectrum for a thermal energy of kT=5.1 keV. Since the neutrons are emitted in a forward cone of 140° opening angle this neutron source can be ideally used for neutron activation measurements similar to the $^{7}{\rm Li}({\rm p,n})$ reaction which is well established for producing a thermal spectrum at kT=25 keV. Measured neutron capture cross sections at kT=5.1 keV can be safely extrapolated to kT=8 keV which is characteristic for the dominant neutron exposure, producing the main s-process component in thermally pulsing low mass AGB stars. As a first application the Maxwellian averaged capture cross section of $^{138}{\rm Ba}$ was measured.

Email: michael.heil@ik.fzk.de

¹ Forschungszentrum Karlsruhe

² University of Notre Dame

³ Los Alamos National Laboratory